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Estimating the strength of bone using linear response
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Accurate diagnostic tools are required for effective management of osteoporosis; one method to identify
additional diagnostics is to search for observable consequences of bone loss. An analysis of a model system is
used to show that weakening of a bone is accompanied by a reduction of the fraction of the bone that
participates in load transmission. On the basis of this observation, it is argued that thé& ratitinear
responses of a network to dc and high-frequency ac driving can be used as a surrogate for their strength.
Protocols needed to obtaln for bone samples are discussed.
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[. INTRODUCTION jected to uniform compression and points located on trans-
verse boundaries are constrained to lie within these planes.
Osteoporosis is a major socioeconomic problem in westNumerical studies of the system support the conjecture that
ern societie§1]. Since excessive use of therapeutic agentdhese networks are a suitable model to study the mechanical
often has adverse effects on patie[?§ noninvasive diag- Properties of bong9].
nostic tools to determine their need are essential for effective The use of a model system to identify possible diagnostic
management of the disease. Bone mineral deriBiyD) is tools can be justified as follows. Most structural details of
the principal such investigative tof8]. Ultrasound scang!]  trabecular bone are patient and location depenf@htin
and structural characteristics of the inner porous region ogontrast, for a diagnostic tool to be useful, it needs to be
trabecular architecturdTA) [5—7] are being studied as broad based; i.e., it should predict the bone strength from
complementary diagnostics. These characteristics accouftany subjects. In other wordmeasures that are viable as
only partially for the strength of a bone and its propensity fordiagnostic tools can only depend on a few generic aspects,
fracture. In this paper, results from the ana|ysis of abut should transcend most details of the. Model systems

model system are used to propose a different diagnostic fg¥an be expected to be useful in determining such “configu-

osteoporosis. ration independent” aspects of trabecular bone.
Porous segments are the principal load carriers in bone
gpm OIolder adu'lts[4], and their structyre is reminiscent of Il BREAKDOWN OE NETWORKS
isordered cubic network$,9]. Most microfractures formed AND STRESS BACKBONES

during routine activity are repaired by a turnover process,
which prevents significant degradation of the quality and It is very difficult to provide theoretical estimates for
fracture toughnes$10] of trabecular bond4]. However, breakdown properties of a network because they depend on
more traumatic events can sever trabecular elements causitite largest fractures preseit6—18. However, it has been
a systematic loss of connectivity and strength of TA withargued that statistical analysis of breakdown properties can
aging. be carried out using methods similar to those used to study
In Ref.[9], a disordered cubic network of fragile elastic transport propertiefl8]. Analysis of our model shows that
elementq 11] with elastic and bond-bending forces was pro-the (mear) fracture strains depend only weakly on the level
posed as a system to model mechanical properties of TA. Asf bone loss,». Consequently, the ultimatéor breaking
suggested by experiments on bone sampl&s13, elastic  strength of such a network is proportional to its elastic
elements are assumed to satisfy a strain-based fracture criteodulusy,. Analogous observations have been made in me-
rion; specifically their fracture strains are chosen from achanical studies; i.e., bone samples from a given anatomical
Weibull distribution [14,15 (with parametersy, and n). site fail at a fixed level of staimdependent of aggl2], and
Bond angles are assigned a similar fracture criterion; theitheir yield stresses are strongly correlated with their elastic
fracture angles are chosen from a second Weibull distributiomoduli [19].
(with parametersy, andn). Bone loss is modeled by ran- Stress transmissions in “healthy” and “weak” networks
dom removal of a fractiorv of elastic elements from the under uniform compression exhibit distinct characteristics, as
network; the remaining struts are assumed to retain theitlustrated in Fig. 1[20]. For clarity only the compressed
elastic moduli. elements of each network are shown, and darker hues repre-
The diagnostic introduced below includes the response ofent larger stresses. On the “healthy” network=(10%)
a network to an ac strain, which depends on the mass distrlarge stresses supporting propagation are distributed evenly.
bution on the network; it is modeled by placing massesn  In contrast, elastic elements supporting a “weak” network
the vertices. The viscous effects of the surrounding mediunfr=30%) form a few coherent pathways. The set of elastic
are modeled by a dissipative force proportional to the speedlements active in load transmission will be referred to as the
of each mass. In the studies reported here, networks are sutstress backbone” of a network21].
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() (b) nominally identical networks. As expected the variability in the

breakdown propertyr(v) is significantly larger than that in the
FIG. 1. The stress distributions on networks of sizex400  transport coefficieng..
with (a) v=10%, andb) »=30% representing “healthy” and “os-
teoporotic” bone, respectively. For clarity only the compressed NY
bonds are shown, and darker hues represent larger stresses. The XO”VT( v). ()
crosses denote locations of long horizontal fractures.

Equation(2) relates a transport properfy, to a breakdown

Reduction in the extent of the stress backbone is causegsroperty r of the network. As discussed in the last section,
by the presence of long fractures on the network. In Fig. 1such a relationship can only be expected to hold on average.
the crosses denote locations where four or more consecutivigure 2 confirms the behavior given in EQ) for a set of
vertical bonds are missing. It is clear that these fracture§ive nominally identical networkg2Q].
prevent the participation of many additional bonds in the Next, we argue that the linear response to an external ac
stress backbone. Since the number of long fractures increasssain can be used to estimate the number of elastic elements
with v, a progressively smaller fraction of elastic elementsthat are present on a network. First subject the network to a
are able to be load carriers. We conjecture that the breakingc compressiongy.) below the yield point, so that there is
strength of a network is related to the fraction of elasticno fracture of elastic elements. Next introduce an additional
elements belonging to the stress backbone. We show nest compression, given by (t)=¢&,.exp(Qt), where &,
that the total number of elements on a network and the num< &, [22]. When() increases so does the attenuation of the
ber that belong to the stress backbone can be estimated frogignal, and a progressively thinner slice of the network is
its linear response to external strain. affected by the ac signal. Figure 3 shows the response of the
network of Fig. 1b) to external ac signals at two frequencies.

Denote byF(t) the sum of vertical forces on the top layer

due to £(t). The linear response of the netwog{(Q) is

Consider first an orderel XM square network of iden-  given by F(Q) = y(Q)(Q), where&(Q) andF(Q) are the
tical elastic elements, each of whose breaking stress, breakpyrier transforms of(t) and F(t), respectively. Whers)
ing strain, and elastic modulus are denotedthyso, and  _,0, there is no attenuation and hengd) approacheso.
Y=to/so. Then the ultimate stress and strain of the completgyn the other hand, for sufficiently large only those struts
(i.e., v=0) network areT(0)=Nty and{(0)=Ms,. Denote  pelonging to the two edges are excited. In this case, each of

by T(v) and{(») their values when a fraction of randomly  the (1— )N bonds of the top layer is strained by a same
chosen struts are removed. The dc respdoselastic modu-  gmount and hence

lus) of the network can be written as

lll. LINEAR RESPONSE

x(Q)=N(1-)Y. 3)

XO:T(V) = Nt T(») £(0) = MT( y)@, (1) Numerical integrations of disordered networks confirm this
{(v)  Mso T(0) &(v) M {(v) expression.

Consider once again the ordered pure network. When only
wherer(v)=T(»)/T(0) is the nondimensionalized breaking the edges experience ac stress the effective height of the
stress of the network. But as was discussed eatlie) is  layer is reduced by a factdd; thus, x(Q) will be larger than
only weakly dependent om. If we approximatel(v) by  yo by a factorM. For v=0, this can be expected to hold
£(0), then (approximately even for disordered networks since the
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FIG. 3. The distribution of stresses on the disordered network of 0.8 g,’J
Fig. 1(b) due to small amplitude ac compressions w(h =10 K
and (b) 2=500. As () increases, so does the attenuation of the _ P
signal, and a progressively thinner slice of the network is affected. 0.6 F’
For sufficiently largel) only bonds belonging to the top and bottom g
layers experience an ac stress. -]
0.4t ge
stress backbone covers the entire network. Even though both n,'-‘-"
Xo and x(Q) will decrease with increasing, the latter will 0.2 da’
be affected less because long fractures in the middle of the o"aa
network (which reduce the stress backbormeve no effect o
on x(Q). These arguments motivate the use of O 0.2 0.4 0.6 0.8 1
(b) )
. X0
I'(v)= lim M— (4) FIG. 4. (a) The relationship betweeR and r for a set of five
o= |x(Q)] equivalent disordered networks. The dashed line shows the best fit

. . ) . of the data to Eq(6) with h(I')=cI'. For the parameterf20]
to estimate the fracnpn of elastic eIements. belonging to theonsideredec=0.90 ands=3.20. (b) shows the analogous relation-
stress backbone. Using Ed8), (3), and(4) gives ship for a disordered cubic network.

~(1-yl. (5) To proceed further, the expression= v(7) is required,;
several forms for it have been proposed in recent studies

If the functionv= v(7) is known, it can be invertete.g., [25-27,17,28 As an example, we can use the expression

the Born expansionto obtain 7= 7(I'). The linear part of
7(I') is universal as can be seen from the following argu-
ment. Since the rigidity threshold for networks that include 1
bond-bending forces is the same as the percolation threshold T
[23], 7(vp)=0 (wherev, is 0.5 for square network4));

i.e., vo=v(7=0). Consequently,

)

1+a,z%+a,z%®

proposed in Ref[28] where z=log(N)/log(vy/v) and N is
7~(1—vo)I'+h(T), (6)  the total number of nodes on the network. The constanis

a,, anda depend on the type of network and model param-
where h(I') denotes nonlinear terms. In order to test thiseters such as the relative strengths of the response coeffi-
expression, numerical studies were conducted on a group afents of the elastic and bond-bending terms. The form of Eq.
five equivalent disordered square networks of size 4(Q7) was deduced by an analysis of the effects of a single
X 100. In evaluating the linear response, the sigf@) was  fracture, and has been tested for a range of values &way
collected after the transients settled. For a giverthere is  from the critical point[28]. (Observe thatr(0)=1 and =
scatter in the values of bothi(v) and 7(v), and Fig. 4a) —0 asv— vy. However, the correct critical behavior will be
shows the mean and range of each variable. The slope @btained only if« is the critical index. This is typically not
7(I') is seen to approach (1vy) asv— vy. the case.
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Given the values o, a,, and« [29], Eq. (7) can be samples. dc strain can be imposed using pressure loading,
inverted to obtain/(7). Substitution of this expression in Eq. and protocols using ultrasonic techniques have been devel-
(5), and inversion gives(I'). Unfortunately, these inver- oped to evaluate the response of bone samples to ac driving
sions are difficult to implement. Furthermore, in analyzing[31]. Previous studies suggest that when their frequencies are
bone samples, it is significantly easier to determirend” larger than~1.5 MHz ultrasonic signals will excite only
than to estimater. For results from the model systenfl’) ~ those trabeculae on the outer edges of a[32]. Methods
can be approximated very well by a two-parameter functior'€€d t0 be developed to implement these measurenents
such ascT'? or (c,I'?+c3I'%). The dashed line in Fig.(@)  VVO. .
shows the best fit using the first form. Several issues need to be reiterated. To calcy}éfe),

A similar relationship can be obtained for disordered cu-only elastic forcegin nodes of the top laygmwere used. In
bic networks. In the reasoning leading to E(®.and(3), N driving a bone sample with an ac strain, matefial the
needs to be replaced by the number of nodes in the top layeputer layey is accelerated in a dissipative medium. These
Thus the only modification in Eq(6) is the value ofv, inertial and dissipative forces are proportionak14 and (),
(which is 0.7508 for cubic network4]). As shown in Fig.  respectively. In contrast, for sufficiently largk, () is Q
4(b), the strength of a disordered cubic network reduces apindependent(since only struts at the edges are exdited

proximately as given by Ed6) when its struts are removed Hence,}(Q) can be evaluated using the response of the TA
randomly. to ac signals over several frequencies. Secondly, although the
linear part ofr(I") is universal its nonlinear terms depend on
IV. DISCUSSION model parameters. Hence the form«f’) will have to be
determined for distinct bone locatiofes.g., femur, vertebrae

The reductionr of bone strength from its peak value can ofore a complete diaanostic 1ol for ESteonorosis is devel-
be used to determine the need for therapeutic intervention tB P 1ag : Steop IS v

reduce the propensity for fracture. Unfortunately, it is notOped' Finally, notice that the def'n't'(.)n df mclude; the
accessiblan vivo, and surrogates such as bone density ar umber of '?‘VG“M of the netwprk, which can be estimated
used to identify osteoporotic bone. However, there is signifi- rom the h_e!ght of a sz_imple since the lengths of t_rabeculae
cant variability between the bone strengths of samples with gom specific anatomical locations are knowtypically
fixed BMD; consequently, it is difficult to identify individu- ~1 mm).
als susceptible to fracture using measurements of BMD
alone[30]. Since breakdown properties depend on the avail-
ability of stress pathways, large variability between the The author would like to thank S. R. Nagel for pointing
strength and density of a bone is not unexpected. out that the response of a network is related to its stress
The diagnostic introduced in this paper bears a strondpackbone. He also acknowledges discussions with M. P.
correlation to the(mean strength of model networks. Ex- Marder, G. F. Reiter, and S. J. Wimalawansa. This research
perimental studies are planned to determine if it can accuwas partially funded by the National Science Foundation, the
rately predict the strength of bone samples. Measuremen®ffice of Naval Research, and the Texas Higher Education
required to evaluat®& can be implemented oax vivobone  Coordinating Board.
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