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Estimating the strength of bone using linear response
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Accurate diagnostic tools are required for effective management of osteoporosis; one method to identify
additional diagnostics is to search for observable consequences of bone loss. An analysis of a model system is
used to show that weakening of a bone is accompanied by a reduction of the fraction of the bone that
participates in load transmission. On the basis of this observation, it is argued that the ratioG of linear
responses of a network to dc and high-frequency ac driving can be used as a surrogate for their strength.
Protocols needed to obtainG for bone samples are discussed.
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I. INTRODUCTION

Osteoporosis is a major socioeconomic problem in we
ern societies@1#. Since excessive use of therapeutic age
often has adverse effects on patients@2#, noninvasive diag-
nostic tools to determine their need are essential for effec
management of the disease. Bone mineral density~BMD! is
the principal such investigative tool@3#. Ultrasound scans@4#
and structural characteristics of the inner porous region
trabecular architecture~TA! @5–7# are being studied a
complementary diagnostics. These characteristics acc
only partially for the strength of a bone and its propensity
fracture. In this paper, results from the analysis of
model system are used to propose a different diagnostic
osteoporosis.

Porous segments are the principal load carriers in b
from older adults@4#, and their structure is reminiscent o
disordered cubic networks@8,9#. Most microfractures formed
during routine activity are repaired by a turnover proce
which prevents significant degradation of the quality a
fracture toughness@10# of trabecular bone@4#. However,
more traumatic events can sever trabecular elements cau
a systematic loss of connectivity and strength of TA w
aging.

In Ref. @9#, a disordered cubic network of fragile elast
elements@11# with elastic and bond-bending forces was pr
posed as a system to model mechanical properties of TA
suggested by experiments on bone samples@12,13#, elastic
elements are assumed to satisfy a strain-based fracture
rion; specifically their fracture strains are chosen from
Weibull distribution @14,15# ~with parametersge and n).
Bond angles are assigned a similar fracture criterion; th
fracture angles are chosen from a second Weibull distribu
~with parametersgb and n). Bone loss is modeled by ran
dom removal of a fractionn of elastic elements from the
network; the remaining struts are assumed to retain t
elastic moduli.

The diagnostic introduced below includes the respons
a network to an ac strain, which depends on the mass di
bution on the network; it is modeled by placing massesm on
the vertices. The viscous effects of the surrounding med
are modeled by a dissipative force proportional to the sp
of each mass. In the studies reported here, networks are
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jected to uniform compression and points located on tra
verse boundaries are constrained to lie within these pla
Numerical studies of the system support the conjecture
these networks are a suitable model to study the mechan
properties of bone@9#.

The use of a model system to identify possible diagno
tools can be justified as follows. Most structural details
trabecular bone are patient and location dependent@9#. In
contrast, for a diagnostic tool to be useful, it needs to
broad based; i.e., it should predict the bone strength fr
many subjects. In other words,measures that are viable a
diagnostic tools can only depend on a few generic aspe
but should transcend most details of the TA. Model systems
can be expected to be useful in determining such ‘‘confi
ration independent’’ aspects of trabecular bone.

II. BREAKDOWN OF NETWORKS
AND STRESS BACKBONES

It is very difficult to provide theoretical estimates fo
breakdown properties of a network because they depen
the largest fractures present@16–18#. However, it has been
argued that statistical analysis of breakdown properties
be carried out using methods similar to those used to st
transport properties@18#. Analysis of our model shows tha
the ~mean! fracture strains depend only weakly on the lev
of bone loss,n. Consequently, the ultimate~or breaking!
strength of such a network is proportional to its elas
modulusx0. Analogous observations have been made in m
chanical studies; i.e., bone samples from a given anatom
site fail at a fixed level of stainindependent of age@12#, and
their yield stresses are strongly correlated with their ela
moduli @19#.

Stress transmissions in ‘‘healthy’’ and ‘‘weak’’ network
under uniform compression exhibit distinct characteristics
illustrated in Fig. 1@20#. For clarity only the compresse
elements of each network are shown, and darker hues re
sent larger stresses. On the ‘‘healthy’’ network (n510%)
large stresses supporting propagation are distributed ev
In contrast, elastic elements supporting a ‘‘weak’’ netwo
(n530%) form a few coherent pathways. The set of elas
elements active in load transmission will be referred to as
‘‘stress backbone’’ of a network@21#.
©2002 The American Physical Society04-1
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Reduction in the extent of the stress backbone is cau
by the presence of long fractures on the network. In Fig
the crosses denote locations where four or more consec
vertical bonds are missing. It is clear that these fractu
prevent the participation of many additional bonds in t
stress backbone. Since the number of long fractures incre
with n, a progressively smaller fraction of elastic eleme
are able to be load carriers. We conjecture that the brea
strength of a network is related to the fraction of elas
elements belonging to the stress backbone. We show
that the total number of elements on a network and the n
ber that belong to the stress backbone can be estimated
its linear response to external strain.

III. LINEAR RESPONSE

Consider first an orderedN3M square network of iden
tical elastic elements, each of whose breaking stress, br
ing strain, and elastic modulus are denoted byt0 , s0, and
Y5t0 /s0. Then the ultimate stress and strain of the compl
~i.e., n50) network areT(0)5Nt0 andz(0)5Ms0. Denote
by T(n) andz(n) their values when a fractionn of randomly
chosen struts are removed. The dc response~or elastic modu-
lus! of the network can be written as

x05
T~n!

z~n!
5

Nt0
Ms0

T~n!

T~0!

z~0!

z~n!
5

NY

M
t~n!

z~0!

z~n!
, ~1!

wheret(n)5T(n)/T(0) is the nondimensionalized breakin
stress of the network. But as was discussed earlierz(n) is
only weakly dependent onn. If we approximatez(n) by
z(0), then

FIG. 1. The stress distributions on networks of size 403100
with ~a! n510%, and~b! n530% representing ‘‘healthy’’ and ‘‘os-
teoporotic’’ bone, respectively. For clarity only the compress
bonds are shown, and darker hues represent larger stresses
crosses denote locations of long horizontal fractures.
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Equation~2! relates a transport propertyx0 to a breakdown
propertyt of the network. As discussed in the last sectio
such a relationship can only be expected to hold on aver
Figure 2 confirms the behavior given in Eq.~2! for a set of
five nominally identical networks@20#.

Next, we argue that the linear response to an externa
strain can be used to estimate the number of elastic elem
that are present on a network. First subject the network
dc compression (jdc) below the yield point, so that there i
no fracture of elastic elements. Next introduce an additio
ac compression, given byj(t)5jacexp(iVt), where jac
!jdc @22#. WhenV increases so does the attenuation of
signal, and a progressively thinner slice of the network
affected by the ac signal. Figure 3 shows the response o
network of Fig. 1~b! to external ac signals at two frequencie

Denote byF(t) the sum of vertical forces on the top laye
due to j(t). The linear response of the networkx̂(V) is
given byF̂(V)5x̂(V) ĵ(V), whereĵ(V) andF̂(V) are the
Fourier transforms ofj(t) and F(t), respectively. WhenV
→0, there is no attenuation and hencex̂(V) approachesx0.
On the other hand, for sufficiently largeV only those struts
belonging to the two edges are excited. In this case, eac
the (12n)N bonds of the top layer is strained by a sam
amount and hence

x̂~V!'N~12n!Y. ~3!

Numerical integrations of disordered networks confirm t
expression.

Consider once again the ordered pure network. When o
the edges experience ac stress the effective height of
layer is reduced by a factorM; thus,x̂(V) will be larger than
x0 by a factorM. For n50, this can be expected to hol
~approximately! even for disordered networks since th

d
The

FIG. 2. The mean values and ranges ofx0 and t(n) for five
nominally identical networks. As expected the variability in th
breakdown propertyt(n) is significantly larger than that in the
transport coefficientx0.
4-2
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stress backbone covers the entire network. Even though
x0 and x̂(V) will decrease with increasingn, the latter will
be affected less because long fractures in the middle of
network ~which reduce the stress backbone! have no effect
on x̂(V). These arguments motivate the use of

G~n![ lim
V→`

M
x0

ux̂~V!u
~4!

to estimate the fraction of elastic elements belonging to
stress backbone. Using Eqs.~2!, ~3!, and~4! gives

t'~12n!G. ~5!

If the functionn5n(t) is known, it can be inverted~e.g.,
the Born expansion! to obtaint5t(G). The linear part of
t(G) is universal as can be seen from the following arg
ment. Since the rigidity threshold for networks that inclu
bond-bending forces is the same as the percolation thres
@23#, t(n0)50 ~wheren0 is 0.5 for square networks@24#!;
i.e., n05n(t50). Consequently,

t'~12n0!G1h~G!, ~6!

where h(G) denotes nonlinear terms. In order to test th
expression, numerical studies were conducted on a grou
five equivalent disordered square networks of size
3100. In evaluating the linear response, the signalF(t) was
collected after the transients settled. For a givenn, there is
scatter in the values of bothG(n) and t(n), and Fig. 4~a!
shows the mean and range of each variable. The slop
t(G) is seen to approach (12n0) asn→n0.

FIG. 3. The distribution of stresses on the disordered networ
Fig. 1~b! due to small amplitude ac compressions with~a! V510
and ~b! V5500. As V increases, so does the attenuation of
signal, and a progressively thinner slice of the network is affec
For sufficiently largeV only bonds belonging to the top and botto
layers experience an ac stress.
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To proceed further, the expressionn5n(t) is required;
several forms for it have been proposed in recent stud
@25–27,17,28#. As an example, we can use the expressio

t5
1

11a1za1a2z2a
~7!

proposed in Ref.@28# wherez5 log(N)/ log(n0 /n) and N is
the total number of nodes on the network. The constantsa1 ,
a2, anda depend on the type of network and model para
eters such as the relative strengths of the response co
cients of the elastic and bond-bending terms. The form of
~7! was deduced by an analysis of the effects of a sin
fracture, and has been tested for a range of values forn away
from the critical point@28#. ~Observe thatt(0)51 and t
→0 asn→n0. However, the correct critical behavior will b
obtained only ifa is the critical index. This is typically not
the case.!

f

d.

FIG. 4. ~a! The relationship betweenG and t for a set of five
equivalent disordered networks. The dashed line shows the be
of the data to Eq.~6! with h(G)5cGb. For the parameters@20#
considered,c50.90 andb53.20. ~b! shows the analogous relation
ship for a disordered cubic network.
4-3
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Given the values ofa1 , a2, anda @29#, Eq. ~7! can be
inverted to obtainn(t). Substitution of this expression in Eq
~5!, and inversion givest(G). Unfortunately, these inver
sions are difficult to implement. Furthermore, in analyzi
bone samples, it is significantly easier to determinet andG
than to estimaten. For results from the model systemh(G)
can be approximated very well by a two-parameter funct
such ascGb or (c2G21c3G3). The dashed line in Fig. 4~a!
shows the best fit using the first form.

A similar relationship can be obtained for disordered c
bic networks. In the reasoning leading to Eqs.~2! and~3!, N
needs to be replaced by the number of nodes in the top la
Thus the only modification in Eq.~6! is the value ofn0
~which is 0.7508 for cubic networks@24#!. As shown in Fig.
4~b!, the strength of a disordered cubic network reduces
proximately as given by Eq.~6! when its struts are remove
randomly.

IV. DISCUSSION

The reductiont of bone strength from its peak value ca
be used to determine the need for therapeutic interventio
reduce the propensity for fracture. Unfortunately, it is n
accessiblein vivo, and surrogates such as bone density
used to identify osteoporotic bone. However, there is sign
cant variability between the bone strengths of samples wi
fixed BMD; consequently, it is difficult to identify individu-
als susceptible to fracture using measurements of B
alone@30#. Since breakdown properties depend on the av
ability of stress pathways, large variability between t
strength and density of a bone is not unexpected.

The diagnostic introduced in this paper bears a str
correlation to the~mean! strength of model networks. Ex
perimental studies are planned to determine if it can ac
rately predict the strength of bone samples. Measurem
required to evaluateG can be implemented onex vivobone
an
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samples. dc strain can be imposed using pressure load
and protocols using ultrasonic techniques have been de
oped to evaluate the response of bone samples to ac dr
@31#. Previous studies suggest that when their frequencies
larger than;1.5 MHz ultrasonic signals will excite only
those trabeculae on the outer edges of a TA@32#. Methods
need to be developed to implement these measuremenin
vivo.

Several issues need to be reiterated. To calculatex̂(V),
only elastic forces~in nodes of the top layer! were used. In
driving a bone sample with an ac strain, material~in the
outer layer! is accelerated in a dissipative medium. The
inertial and dissipative forces are proportional toV2 andV,
respectively. In contrast, for sufficiently largeV, x̂(V) is V
independent~since only struts at the edges are excite!.
Hence,x̂(V) can be evaluated using the response of the
to ac signals over several frequencies. Secondly, although
linear part oft(G) is universal its nonlinear terms depend o
model parameters. Hence the form oft(G) will have to be
determined for distinct bone locations~e.g., femur, vertebrae!
before a complete diagnostic tool for osteoporosis is de
oped. Finally, notice that the definition ofG includes the
number of layersM of the network, which can be estimate
from the height of a sample since the lengths of trabecu
from specific anatomical locations are known~typically
;1 mm).
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